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Abstract: This paper presents a complete and optimal framework for extending basic 
graph planning to operate in partitioned problem spaces. These spaces typically occur in 
systems that implement a hierarchy or contain data of various resolutions. An algorithm 
for the framework will be presented along with a proof of optimality. Finally, an example 
implementation for mobile robot path planning will be discussed. 
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1 INTRODUCTION 

There are many examples of problem decomposition 
into distinct planning regions in the current literature. 
One common occurrence of regions is in the creation 
of a planning space hierarchy. Fernández and 
González [2,3] have presented a world view that has 
been decomposed into the hierarchical graph model. 
In the graph model, high-resolution nodes are 
abstracted to form a smaller number of lower 
resolution super nodes. Each super node is then 
connected to form a planning graph and planning is 
performed on this low-resolution representation of 
the space.  Fernández and González present a 
technique for connecting and searching these graph 
structures, which may contain any number of 
hierarchical levels, that is based on the classic 
refinement method. However, the authors state that 
this technique is not guaranteed to find the cost 
optimal path ([3], p. 106).  
 
Another view of hierarchical planning is presented 
by Lacaze [4] for mobile robot applications. In this 
paper, the planning space is viewed as having a high 
node density near the robot with decreasing density 
as the distance to the robot increases. Forming 
regions of equal node count as shown in Figure 1 
creates the hierarchy. A region of high node density 
exists around the robot’s current location where 
high-resolution sensor information is available. 
Further from the robot, the sensors are only able to 
detect large objects and the corresponding node 
density decreases. Finally, once the limits of the 
sensors have been exceeded, the node density drops 
to correspond to the feature density represented in 
the a priori dataset. Through this technique an 
optimal plan may be computed for each individual 
region. However, the final plan will be piecewise 
optimal and is not guaranteed to be optimal when 
taken as a whole. 

 

R3

R1

R2

 
Figure 1: Example of node density for 2-D mobile 

robot application based on Lacaze [4]. 

 
One of the benefits of this hierarchical 
decomposition is that in time-constrained 
environments a path may be quickly found through 
the low-resolution graph and executed as a sub-
optimal plan. If more time is available, individual 
sections of this path are expanded and a new refined 
plan is constructed that is a refinement of the 
previous path. Through the use of this technique, this 
algorithm may act as an anytime algorithm [5]. 
 
In this paper, a new technique will be explored that 
allows for the creation of an arbitrary number of 
irregularly shaped and placed regions. Regions of 
this form have been encountered by NIST while 
developing an autonomous vehicle for on-road 
driving as part of the ARL Demo 3 and DARPA 
MARS programs. This technique, which builds upon 
existing graph-based planning techniques, will be 
shown to be applicable to multi-agent systems and 
will be proven to be capable of providing the overall 
optimal solution to the planning problem. The 



     

algorithms discussed in this paper are an extension to 
thesis work performed at the University of Bremen 
that may be found in [1]. 
 

2 FRAMEWORK DEFINITIONS 
Before the framework for planning in partitioned 
problem spaces may be described in detail, certain 
basic graph-planning definitions must be established. 
This section will present definitions that apply 
equally to traditional hierarchical planning 
techniques and the partitioned planning framework. 
Section 2.2 will then extend these definitions to meet 
the unique needs of the partitioned problem 
framework.  
 
2.1 Graph-Based Planning Definitions 
The basic planning problem may be described as the 
desire to find a cost optimal sequence of transitions 
for the task of transitioning from one element of a 
discrete planning space S ⊆ ℕn (denoted by  

start
s  ∈ S) to another (denoted by 

goal
s ∈ S).  

 
A node space V that allows for the time sequencing 
of the elements of S by an ordered sequence of points 
T, the set of arcs A that represents a binary relation 
on the space V, the graph G, and various graph 
properties may now be defined. 

The node space V is defined by (SxT) where S ⊆ ℕn, 
T = (t1,…,tm), m ∈ℕ. An element of V is defined as 
vk,i := 

it,k
s , k ∈ℕn, k∈ℕ, i∈ℕ.        (D1) 

An arc A is defined as a binary relation  
a = (vk,i, vj,i+1).           (D2) 

The mapping c:A→ℂ is called the cost function of an 
arc. One typical specification for ℂ is ℂ = ℜ+.    (D3) 

The spanning set of a node vk,i  denoted by SP(vk,i ) 
is defined as the set of nodes that are reachable 
through a single arc. Members of the spanning set are 
also denoted as the successors of the node vk,i.    (D4) 

A graph G is defined as G = (V, A).       (D5) 

Given a graph G = (V, A), and nodes vk,i, vj,i+1,…, 
vm,i+n ∈ V, i, j, k, n∈ℕ. A path p is defined by  
p = (vk,i, vj,i+1,…,vm,i+n) such that two adjacent nodes 
of p constitute an arc a∈A. P is defined as the set of 
all paths p in G. The length l of p is defined as the 
number of arcs of the path.             (D6) 

The path cost associated to a path p is defined as 
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The system objective of finding the cost optimal path 
from

start
s  ∈ S to 

goal
s ∈ S may now be achieved by 

finding the minimum cost path between the two 
nodes vstart,i and vgoal,j.  

Define the minimum cost path pmin between the nodes 
vj,i and vk,i+n, n ≠ 0 and i, j, k, n ∈ ℕ,  such that 
∀p∈P : p = ( vj,I,…,vk,i+n) : pc(pmin) ≤ pc(p).        (D8) 

 

2.2 Framework Specific Definitions 
In addition to representing an element of the planning 
space 

it,k
s ∈ S, a node may be said to represent the 

features that are present in 
it,k

s . These features are 

represented by attributes attached to the nodes v∈V.  

Define ATT as the set of node attributes by  
ATT = {att k,i | att k,i is a attribute of vk,i ∈ V}.     (D9) 
 
The set ATT defines a set of attributes that may be 
identified in the given planning problem and mapped 
onto a single node. An example would be: ATTk,i = 
{“contains data from sensor 1”, “member of area-of-
interest 2”, “high-probability of obstacles”}.  
 
An annotated node space Va may be defined that 
combines the node space V and the set of attribute 
sets ATT. 

An attributed node space Va is defined as  
Va:= ( ){ }i,ki,k

a
i,k ATT,vvV =× ATT .     (D10) 

 
Given the existence of attributes, it is possible to 
define a unary relation r that partitions V according 
to specific attributes. For the above example, the 
relation r may define membership in a partition of Va 
by requiring the existence of data from sensor 1. This 
will define a closed circle of a certain radius centered 
on the sensor. A region Va,r may then be defined as 
the subset of Va where the relation r holds. 

Given a relation r ⊆ ATT, a region Va,r ⊆ Va is 
defined by {vk,i ∈ Va | R(ATTk,i) = true}.      (D11) 
 
Additionally, a set of regions that contains all of the 
nodes from Va will be defined as a complete set of 
regions R. 

The set of n regions Va,R, R = {r1, r2,…,rn} is 

complete iff U
n

i

ara i

1

,

=

= VV .      (D12) 

It can be shown that any node v ∈ Va is also a 
member of the complete set of regions R. 
 
Lemma: If v ∈ Va and Va,R, R = {r1, r2, …, rn } is a 
complete set of regions, then v ∈ Va,R.        (L1) 
 
Proof: Assume v ∉ Va,R, then by (D12),  

Va,R = U
n

1i

ai,a

=

= VV  and v ∉ Va which contradicts 

the original assumption. 
 
Given the above definition of a region, it is possible 
that graph nodes exist that are members of multiple 
regions. These shared graph nodes form the boundary 
between the regions. The boundary nodes may have 



     

members of their spanning set that are located in the 
boundary, or in either region that forms the 
boundary. In order to provide transitions between 
regions, the partitioned planning framework requires 
that boundary nodes contain successors that are 
uniquely located in each of the regions that form the 
boundary.  The formal requirements on the regions 
for the partitioned planning approach are defined 
below. 

Given the set of n regions R = {r1,…,rn}, the 
boundary set of any two regions c, d is defined as  
Bc,d := { vk,i ∈ Va | vk,i ∈ Va,c ∧ vk,i ∈ Va,d }.      (D13) 

A boundary set Bc,d is called a partitioning boundary 
set iff ∀ vk,i ∈ Bc,d, ∃ vm,i, vn,i ∈ SP(vk,i) : vm,i ∈ Va,c, 
vm,i ∉Va,d ∧ vn,i ∈ Va,d, vn,i ∉Va,c.       (D14) 

A node space Va,R, R = {r1, r2, …, rn}  is called a 
partitioned planning space iff Va,R is complete and 
Bc,d is a partitioning boundary for  all  
c,d ∈{1,…,n}, c ≠ d.        (D15) 

 
The spanning set of the nodes of the partitioning 
boundary set may now be specialized on a regional 
basis. It will be shown that the union of these 
regional spanning sets is equal to the spanning set 
defined in (D4). 

Define the regional spanning set SPi of a node vk,i as 
the set of all successor nodes  
SPi (vk,t) =  
{vj,t+1 | ∀j∈ℕ : vj,t+1∈spk,t ∧ri(ATTj,t+1)=true     (D16) 
Lemma: ∀ vk,t ∈ Va, SP(vk,t) = U

i
t,k

i )v(SP  where 

R = {r1, r2, …, rn} is complete. (L 2) 
 
Proof: (D16) may be rewritten as U

i
t,k

i )v(SP = 

{vj,t+1 | ∀j∈ℕ : vj,t+1∈spk,t ∧ true)ATT(r 1t,j
i

i =+U } 

From (D12) and the fact that R is complete,  

U
i

iSP (vk,t) = { spk,t+1| spk,t+1∈ Va}. By (D4) all 

members of the spanning set are connected by an arc 
and must therefore be elements of Va, and the 
definition reduces to U

i

iSP (vk,t)  = SP(vk,t). 

 
3 PARTITIONED PLANNING 

ALGORITHM 
Figure 2 describes the planning algorithm for 
operation over a partitioned planning space. A 
separate version of this algorithm will be executed 
for each of the partitions ri ∈ R, i = {1,2,…,n}. These 
algorithms may be run serially, or may be executed 
in parallel with no effect on the final complete 
solution as will be shown in Theorem 1.  
 
Step (1) of the algorithm establishes a maximum 
planning cost Cmax. An error and planner termination 

will result if the planner is unable to find a plan of 
cost less than Cmax. 
 
The main change to a basic graph search that is 
necessary for operation over partitions is the 
inclusion of the boundary nodes into the algorithm 
framework. These boundary nodes are made part of 
the goal set for the partition, and must be reached in 
regions that do not include the goal before the 
algorithm can terminate.  
 
In order to include the boundary as part of the goal 
set, step (3) forms the new goal set *

rG that includes 
the systems goals as well as the boundary regions. 
 
Step (4) selects a graph node to be opened. Any 
optimal and complete graph search algorithm may be 
applied here. 
 
Planning algorithm for partitioned planning space 
Va,R where R = {r1,…,rn}. 
1) Initialize planning open threshold Cr to 

maximum allowable plan cost Cmax (may be 
∞). 

2) If region contains 
0t,startv , insert this into 

region’s open set Or. 
3) If region contains one or more goals, 

gt,goalv , 

insert them into the region specific goal set Gr. 
a) Form the set  

*
rG  = Gr ∪ Br,j, ∀j ∈ {1,…,n}. 

4) Determine next node to open. 
a) If Or = ∅, go to (3a). 
b) Else, using the graph search technique of 

your choice, select and remove a node 

it,kv  from Or. 

5) Evaluate 
it,kv . 

a) If PC(
0t,startv ,

it,kv ) ≥ Cr, goto (8). 

b) If 
it,kv ∈ *

rG , remove 
it,kv from *

rG . If 
*
rG = ∅, set Cr = PC(

0t,startv ,
it,kv )  and 

go to (8). 
6) ∀ 

1it,mv
+

∈ SPr(
it,kv ) 

a) Evaluate arc(
it,kv ,

1it,mv
+

) according to 

graph search algorithm and add 
1it,mv

+
to 

Or if necessary. 
b) If 

1it,mv
+

∈ Br,j, r ≠ j, ∀j∈{1,2,…,n} ∧ 

1it,mv
+

∈ Or, add 
1it,mv

+
to Oj. 

7) Go to (4). 
8) Are we finished, or do we have an error? 

a) If *
jG = ∅, ∀j∈{1,2, …,n} then finished! 

b) Else, if Cj ≥ Cmax, ∀j∈{1,2, …,n} then no 
plan found. ERROR. 

c) Else, keep going. Go to (4). 
 

Figure 2: Partitioned planning spaces algorithm.  



     

 It should be noted that an empty open set causes an 
idle cycle rather then an error. The reason for this is 
that the path cost from a boundary node 

it,kv ∈ Bc,d  
to the start node may be changed by the search 
algorithm running in either region rc or rd. If a change 
is made, the node is placed on the open list of both 
regions. 
 
Step (5) of the algorithm begins the evaluation of the 
selected node. Its cost and membership in the goal 
set are checked. If its cost is greater than the regional 
stopping threshold or it is the last member of the goal 
set, then error and termination checking is performed 
(see step (8)). 
 
Step (6) continues the evaluation procedure with the 
cost of achieving each member of the node’s 
spanning set being evaluated. If the graph evaluation 
algorithm adds the node to the regions open set, and 
the node is part of a boundary, the node will also be 
added to the other boundary member’s open set. This 
allows cost to propagate across the boundaries and as 
will be shown allows for the joint optimal solution to 
be found.  
 
In order to properly propagate this value to the 
region not responsible for the value change, the 
normal graph search stopping criterion must be 
changed to cause repeated planning cycles to occur. 
This is accomplished in step (8) of the algorithm. 
The repeated cycle will quickly terminate (no nodes 
other then the boundary nodes will be placed on the 
open list) if no changes have occurred. However, if 
boundary changes have occurred, they will propagate 
through the graph.  
 
The algorithm from Figure 2 may be applied to any 
configuration of partitioned planning spaces. Two 
possible configurations are shown in Figure 3, where 
the left hand drawing represents a classical nested 
hierarchy, and the right hand drawing represents a 
space designed for parallel implementation of the 
planning algorithm. A combination of the two 
partitioning approaches is also possible where 
regions may be defined based on information 
content. For example, for a road planning system, 
cities may represent independent regions where a 
different planning algorithm may be run than in rural 
areas. In general, these partitions may exist anywhere 
in the planning space with a separate graph search 
system operating on each partition. If the individual 
plan constructed in each partition is optimal, then the 
final plan constructed by the algorithm of Figure 2 
will also be optimal. This statement will now be 
formalized. 
 

 
Figure 3: Sample partitioned planning spaces. 

Theorem 1: Given the partitioned planning space 
Va,R , R = {r1,r2,…,rn} with a independent version of 
the planning algorithm from Figure 2 executing in 
each region and a graph search algorithm in step (4) 
of Figure 2  that is optimal and complete. Further, 
given the start node

it,startv , the goal node 

mt,goal i
v + , and the path p(

it,startv ,…, mt,goal i
v + ) 

is the final path produced. Then 
)v,...,v(p)v,...,v(p mt,goalt,startminmt,goalt,start iiii ++ =  

is the cost optimal path through the graph in the 
space Va,R, and it is cost equivalent to the cost 
optimal path through the graph in the space Va. 
 
 
Proof (a): Assume 

).v,...,v(p)v,...,v(p mt,goalt,startminmt,goalt,start iiii ++ ≠

Then ∃ p*(
it,startv ,…, mt,goal i

v + ): 

)).v,...,v(p(pc))v,...,v(p(pc mt,goalt,startmt,goalt,start
*

iiii ++ <

By (D6), ∃ node 
at,kv : 

at,kv ∈Va,R, 

+∧∉ + ))v,...,v(p(pc)v,...,vp(v
aiiia t,kt,start

*
mt,goalt,startt,k

))v,...,v(p(pc))v,...,v(p(pc mt,goalt,startmt,goalt,k
*

iiia ++ <

where 
at,kv is the first node from the path 

∧∈ ++ )v,...,v(pV:)v,...,v(p mt,goalt,start
*

t,kmt,goalt,start
*

iiaii

).v,...,v(pv mt,goalt,starti,k ii +∉   
Without loss of generality assume that .rv c1t,1k a

∈−−  
Four different situations exist with respect to 
boundary set membership for the nodes 

at,kv and 

1t,1k a
v −− . 

Case 1: 1t,1k a
v −− ∉ Bc,d ∧ 

at,kv ∉ Bc,d. 

Case 2: 1t,1k a
v −− ∈ Bc,d ∧ 

at,kv ∉ Bc,d. 

Case 3: 1t,1k a
v −− ∉ Bc,d ∧ 

at,kv  ∈ Bc,d. 

Case 4: 1t,1k a
v −− ∈ Bc,d ∧ 

at,kv ∈ Bc,d. 

 
For case 1 and case 4, both 1t,1k a

v −− ,
at,kv ∈ rc,  

c ∈ {1,…,n}. In these cases, both nodes are in the 
same region and a cost optimal algorithm is running 
in that region. The fact that 

at,kv is not included in 

the final path contradicts the assumption that the 
individual region’s algorithm is cost optimal. 
For case 2, 

at,kv ∈ rc, at,kv ∉ )(SP 1,1 −− a

d
tk

r v ,  

c ≠ d ∈ {1,…,n}. By (D6),  
∃ arc( 1t,1k a

v −− , 
at,kv ), and by Lemma 2,  

at,kv ∈ )(SP 1,1 −− a

c
tk

r v . 

Therefore either 
at,kv  is a member of the open set 

Oc, or 
at,kv has already been expanded. Given that 

the path p is the final path, so all 
at,kv : 

.O))v,...,v(p(pc))v,...,v(p(pc cmt,goalt,startt,kt,start iiai
∉< +



     

This forces the conclusion that 
at,kv  has been 

expanded. However, if 
at,kv has been expanded, 

then by step (6) of the algorithm from Figure 2, 
pmin( it,startv ,…, mt,goal i

v + ) would include this 
node. This contradicts the initial assumption. 
 
For case 3, 1t,1k a

v −− ∈ rc, at,kv ∈ rc, rd,  

at,kv ∈ )(SP 1,1 −− a

c
tk

r v , c ≠ d ∈ {1, …, n}. By 

(D6) ∃ arc( 1t,1k a
v −− ,

at,kv ),
at,kv ∈ 

)(SP 1,1 −− a

c
tk

r v . 

Therefore 
at,kv is a member of Oc or has been 

expanded for region rc. If at,kv is expanded in region 

rc, then by step (6) of the algorithm from Figure 
2,

at,kv will either be a member of Od, or pmin would 

include this node.  pmin including this node 
contradicts the initial assumption. Therefore 

at,kv ∈ 

Oc ⋁ Od. However, since given that algorithm path is 
final path, all 

at,kv : 

∉< + ))v,...,v(p(pc))v,...,v(p(pc mt,goalt,startt,kt,start iiai
 

Oc, Od. This forces the conclusion that 
at,kv has 

been expanded in both regions which contradicts 

at,kv ∈ Oc ⋁ Od. 

 
Proof (b):  
From Lemma 1 and Lemma 2, every node and set of 
arc connections that exists in Va also exists in Va,R. 
Therefore all paths that exist in Va exist in Va,R, and 
all paths that exist in Va,R exist in Va. 
 

4 PLANNING EXAMPLE 
Figure 4 depicts an example of a planning space that 
has been decomposed into two partitions. A single 
cooperative planning agent operates on each 
partition. In Figure 4(a) the two striped spheres are 
the start and goal locations, and the dark band 
represents the boundary between the inner and outer 
planning regions. 
 
Planning begins in a single region at the start 
location, and proceeds until a node is expanded 
whose spanning set contains nodes that are located in 
a boundary. This is shown in Figure 4(b) where the 
speckled sphere is the node being expanded. 
 
The boundary nodes will now be placed in both 
region 1 and region 2’s open set. This will cause the 
planning algorithm of region 2 to begin operation (it 
now has a node to expand), and both planning 
operations proceed in parallel. 
 
 

 
Figure 4: Example of graph expansion. 

While evaluating its spanning set (step (6) of the 
algorithm from Figure 2), it is possible that the 
planner operating in region 2 will find another path 
to a boundary node and that this path will be cheaper 
than the path that was originally found by the region 
1 planning system. This is depicted in Figure 4(c) 
where the specked link represents the older more 
expensive connection. This will cause the more 
expensive link to be removed, and the boundary node 
to be inserted in both regions open sets (step (6b) of 
the planning algorithm). This procedure does not 
interrupt the flow of either planning system. 
 
As shown in Figure 4(d) by the white speckled 
spheres, a valid path exists once the planner 
operating in the region that contains the goal opens 
the goal node for evaluation. However, if all of the 
regions have not finished their planning cycle, this 
plan is not guaranteed to be optimal. This is seen in 
Figure 4(e) where the region 1 planning system finds 
a cheaper path to a boundary node and causes the 
region 2 planning system to recommence planning.  
The final optimal path is found when condition 8(a) 
of the algorithm is satisfied and is displayed in 
Figure 4(f). 
 

5 CONCLUSIONS AND FUTURE WORK 
This paper has presented a new framework for 
planning in partitioned planning problem spaces. 
These problem spaces may be of the classical nested 
hierarchy form or of a more complex form of 
partially overlapping planning spaces. This 
framework was proven to provide a complete and 
optimal solution assuming that a complete and 
optimal graph search algorithm is utilized. 
 



     

In the near future, the authors will be implementing 
this framework for use in an autonomous vehicle’s 
on-road planning system. This system will function 
much as the planning example in Figure 4 where the 
exterior region (region 2) will contain a priori data 
on the basic road network and the interior region 
(region 1) will contain high-resolution data on 
obstacles, exact lane trajectories, etc. 
 
The main challenge that is expected in the 
implementation of this system will be the mapping of 
the boundary regions and providing a mechanism for 
assuring that unit cost equivalence is maintained 
between the two parallel planning systems. 
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